
APPENDIX G

Hamiltonian Formulation of
Classical Mechanics

In this appendix, we briefly review some aspects of the Hamiltonian formulation
of classical mechanics. The Hamiltonian function for a single particle described
by a single coordinate, call it x , is a function of x and the so-called “conjugate
momentum,” px . Examples of such coordinate pairs include

• x and px = mẋ (ordinary momentum) for translational motion and

• θ and pθ = Lz = mr2θ̇ (angular momentum) for a rotational system.

The Hamiltonian is written as H = H (x , px) and x and px are initially considered
as independent variables.

The dynamical equations of motion for x(t ) and px(t ) are Hamilton’s
equations, namely

dx

dt
=ẋ = ∂H

∂px
(G.1)

−dpx

dt
=− ṗx = ∂H

∂x
(G.2)

To see the equivalence to Newtonian mechanics, note that the Hamiltonian
function

H (x , px) = p2
x

2m
+ V (x) (G.3)

gives the equations

ẋ = px

m
and − ṗx = ∂V (x)

∂x
≡ −F(x) (G.4)

or

mẍ = ṗx = F(x) (G.5)
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The Hamiltonian function for the degrees of freedom of more than one
particle (in one dimension) can be written

H = H (xi , pi) =
∑

i

p2
i

2mi
+

∑
i

Vi(xi)+
∑
i>j

Vij(xi − xj) (G.6)

with the corresponding equations

dxi

dt
= ẋi = ∂H

∂pi
(G.7)

−dpi

dt
= −ṗi = ∂H

∂xi
(G.8)

For two functions which depend on the coordinates of a multivariable problem
(and possibly the time coordinate explicitly), g = g (xi , pi ; t ) and h = h(xi , pi ; t ),
the Poisson bracket is defined via

[g , h] =
∑

k

(
∂g

∂xk

∂h

∂pk
− ∂g

∂pk

∂h

∂xk

)
(G.9)

Any such arbitrary function can depend on time either from an explicit t
dependence or via the coordinates xi(t ), pi(t ); a convenient way of exhibiting
the time-development of a function is

dg

dt
= ∂g

∂t
+

∑
k

(
∂g

∂xk

dxk

dt
+ ∂g

∂pk

dpk

dt

)

= ∂g

∂t
+

∑
k

(
∂g

∂xk

∂H

∂pi
− ∂g

∂pk

∂H

∂xi

)

= ∂g

∂t
+ [g , H ] (G.10)

Note the similarity between this classical relation and Eqn. (12.88) for the time
rate of change of expectation values of quantum operators.

Example G.1.

Using the Poisson bracket formalism, we can show that angular momentum is conserved for
a central potential in three dimensions. The Hamiltonian function is given by

H = 1
2m

(
p2x + p2y + p2z

)
+ V (r) (G.11)

where r = √
x2 + y2 + z2. We note that the force is given F = −∇V (r) so that

∂V (r)
∂x

= (−F)x
r

(G.12)

and so forth.
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(Continued)

Considering, for definiteness, the z component of angular momentum given by Lz =
xpy − ypx , one can show that

dLz
dt

= ∂Lz
∂t

+ [Lz ,H]

=
[
∂Lz
∂x

∂H
∂px

− ∂Lz
∂px

∂H
∂x

]
+

[
∂Lz
∂y

∂H
∂py

− ∂Lz
∂py

∂H
∂y

]
+

[
∂Lz
∂z

∂H
∂pz

− ∂Lz
∂pz

∂H
∂z

]

=
[
(py)

(px
m

)
− (−y)

(
−F x

r

)]
+

[
(−px)

(py
m

)
− (x)

(
−F y

r

)]
dLz
dt

= 0 (G.13)

This relation also suggests that the Poisson bracket of two functions is
the classical quantity which can be generalized in quantum mechanics to the
commutator of two operators

[ĝ , ĥ] ≡ ĝ ĥ − ĥĝ (G.14)

via

[g , h]Poisson −→ [ĝ , ĥ] = i�[g , h]Poisson (G.15)

The Hamiltonian for a charged particle acted on by electromagnetic fields is
written in terms of the potentials, φ(r, t ) and A(r, t ) via

H (r, p) = 1

2m

(
p − qA(r, t )

)2 + qφ(r, t ) (G.16)

To prove this requires one to show that the corresponding Hamilton’s equations
reproduce Newton’s laws with the Lorentz force. The classical Hamiltonian in
Eqn. (G.16) can be written more explicitly as

H = 1

2m

(
p2

x + p2
y + p2

z

)
− q

m

(
px Ax + py Ay + pz Az

)
+ q2

2m

(
A2

x + A2
y + A2

z

)
+ qφ (G.17)

Hamilton’s equations for the x and px coordinates in this case become

ẋ = ∂H

∂px
= px

m
− q

m
Ax or mẋ = px − qAx (G.18)
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and

−ṗx = ∂H

∂x

= − q

m

(
px
∂Ax

∂x
+ py

∂Ay

∂x
+ pz

∂Az

∂x

)

+ q2

2m

(
Ax

∂Ax

∂x
+ Ay

∂Ay

∂x
+ Az

∂Ax

∂x

)
+ q

∂φ

∂x
(G.19)

These can be combined by differentiating Eqn. (G.18) with respect to t provided
one recalls that

mẍ = ṗx − q
dAx

dt
= ṗx − q

(
∂Ax

∂t
+ ẋ

∂Ax

∂x
+ ẏ

∂Ax

∂y
+ ż

∂Ax

∂z

)
(G.20)

since A = A(x(t ), y(t ), z(t ); t ) depends on time explicitly (through the t ) and
implicitly (through the time-dependent positions). The resulting equation for
the x variable is then

mẍ = q

({
−∂φ

∂x
− ∂Ax

∂t

}
+

{
ẏ

[
∂Ay

∂x
− ∂Ax

∂y

]
+ ż

[
∂Az

∂x
− ∂Ax

∂z

]})
(G.21)

or

mẍ = q (Ex + (v × B)x) (G.22)

since

E = −∇φ(r, r)− ∂

∂t
A(r, t ) and B = ∇ × A(r, t ) (G.23)

The Hamiltonian formalism also provides a way to describe classical probab-
ility distributions for position and momentum which can be compared to their
quantum counterparts (as discussed in Sections 5.1 and 9.4). One starts with
the notion of the classical phase space. For one particle in one dimension, this
is the space of possible values of x and p, as in Fig. G1; for N particles in three
dimensions, it is a 6N -dimensional space corresponding to the possible values
of ri , pi . Given a set of initial conditions, the solutions obtained from Newton’s
(or Hamilton’s) equations for x(t ) and p(t ) trace out a trajectory in the phase
space. For example, for a harmonic oscillator with initial conditions x(0) = A
and ẋ(0) = 0, the solutions are obviously

x(t ) = A cos(ωt ) and p(t ) = −Aω

m
sin(ωt ) (G.24)
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Figure G.1. Phase space diagram (plot of allowed values of p and
x) for a single particle in a harmonic oscillator potential. The allowed
“trajectories” in the parameter space in this case are determined by
Eqn. (G.24).

x

p

E2 > E1

E1

which gives the elliptical path in phase space shown in Fig. G1. The form of this
“trajectory” can be determined, even if we specify only the total energy, via the
relation

E = H = p2

2m
+ 1

2
mω2x2 (G.25)

The phase space distribution,ρ(x , p), for a given value of E can then be written
in the form

ρ(x , p) = K δ(E − H (p, x)) (G.26)

where the normalization constant is determined by the condition that∫
dx

∫
dp ρ(x , p) = 1 (G.27)

The classical probability densities for position (x) or momentum (p) can be
derived by integrating over the variable which is not specified; for example,

PCL(x) =
∫

dp ρ(x , p) and PCL(p) =
∫

dx ρ(x , p) (G.28)

As an example, consider the Hamiltonian with a general potential energy
function V (x)

H = p2

2m
+ V (x) (G.29)

If we write p0(x) = √
E − V (x), the corresponding classical distribution in x

will be given by

PCL(x) = K

∫
dp δ

(
E −

(
p2

2m
− V (x)

))

∝
∫

dp δ
(
p2 − 2m(E − V (x))

)
≡

∫
dp δ

(
p2 − p2

0(x)
)
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= 1

2|p0(x)|
∫

dp
[
δ(p − p0(x))+ δ(p + p0(x)

]
∝ 1√

E − V (x)
(G.30)

since p2
0(x) = 2m(E − V (x). This is the same result obtained in Sections 5.1

and 9.4.1, using more intuitive methods.

G.1 Problems

PG.1. Write down Hamilton’s equations for the angular variable pair θ and pθ = mr2θ

where the Hamiltonian is

H = p2
θ

2I
+ V (θ) (G.31)

and show how the standard equations for rotational motion arise.

PG.2. Show that the Poisson bracket of the position and momentum coordinates of a
multiparticle system satisfy

[xi , xj ] = 0, [pi , pj ] = 0, and [xi , pj ] = δi,j (G.32)

PG.3. Consider a harmonic oscillator for which the classical Hamiltonian is

H = p2
x

2m
+ 1

2
mω2x2 (G.33)

Use Eqn. (G.10) to show that the function

φ(x , px ; t ) = i
(
log(A)− log(x − ip/mω)

) − ωt (G.34)

is actually independent of time for this system. What is the physical significance
of this variable?

PG.4. For the classical Kepler problem, defined by the Hamiltonian

H = 1

2m
p2 − k

r
(G.35)

show that the Lenz–Runge vector defined by

R = r̂

r
−

(
1

mk

)
p × L (G.36)

is a constant of the motion, that is it is conserved. Do this by showing that
dR/dt = 0 using the Poisson bracket formalism.
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PG.5. Using the Hamiltonian corresponding to a linear confining potential

H = p2

2m
+ C |x| (G.37)

and Eqn. (G.28), derive PCL(p).

PG.6. What does the classical phase space diagram look like for one particle in the one-
dimensional infinite well, that is, what is the analog of Fig. G1? For the particle
in the potential of PG.5? For an unbound free particle? For a particle subject to a
constant force given by V (x) = −Fx? For a particle bouncing up and down on
a table, with no energy loss, under the influence of gravity?




