
APPENDIX F

Vectors, Matrices, and Group 
Theory

We collect here some of the most basic definitions and properties of real, finite-
dimensional vectors and matrices. We intentionally ignore all of the subtleties
regarding the precise definitions of vectors and tensors and supply only the “bare
necessities”. Many comments on the generalization of these ideas to complex
vectors and infinite dimensional spaces are given in the text. We then briefly
describe some of the rudiments of group theory.

F.1 Vectors and Matrices

We will take vectors to be ordered N -tuples of numbers, for example,

x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ) (F.1)

along with a dot - or inner-product of the form

x · y =
N∑

i=1

xiyi = x1y1 + x2y2 + · · · + xN yN (F.2)

The norm (or generalized length) of the vector is taken to be

|x| = √
x · x (F.3)

A matrix will be defined to be a square N × N array of the form

M =




M11 M12 · · · M1N

M21 M22 · · · M2N
...

...
. . .

...
MN 1 MN 2 · · · MNN


 (F.4)
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The unit matrix is given by

1 =




1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 1


 (F.5)

Multiplication of a vector by a matrix on the left (as with operators) gives a
vector, that is,

x′ = M · x (F.6)

In component form one can write

(x ′)i = (M · x)i =
N∑

j=1

Mij xj (F.7)

or more explicitly

M · x =




M11 M12 · · · M1N

M21 M22 · · · M2N
...

...
. . .

...
MN 1 MN 2 · · · MNN


 ·




x1

x2
...

xN




=




M11x1 + M12x2 + · · · + M1N xN

M21x1 + M22x2 + · · · + M2N xN
...

MN 1x1 + MN 2x2 + · · · + MNN xN


 (F.8)

The product of two matrices is again a matrix with the component definition

(M · N)ik =
N∑

j=1

Mij Njk (F.9)

or

the (ik)-th element of M · N
�

(the ith row of M) dotted into (the kth column of N)

The transpose of the matrix M, labeled MT, is obtained by “reflecting” all of
its elements along the diagonal (the i = j components staying fixed), that is,

(MT)ij = (M)ji = Mji (F.10)
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so that 
a b c

d e f
g h i




T

=

a d g

b e h
c f i


 (F.11)

The generalization of this to complex matrices is the adjoint or Hermitian
conjugate defined via

M† = (MT)∗ = (M∗)T (F.12)

which “flips” the matrix elements and takes their complex conjugate.
The equivalent of the expectation value of an operator in a quantum state is

given by

〈x|M |x〉 ∼ x ·M · x =
N∑

j=1

N∑
k=1

xj Mjkxk (F.13)

A matrix transformation of the form Eqn. (F.6) generally changes the norm
of the vector since

x′ · x′ =
∑

i

x ′i x ′i =
N∑

i=1


 N∑

j=1

Mij xj


 (

N∑
k=1

Mikxk

)

=
N∑

j ,k=1

xj

[∑
i

(M T )jkMik

]
xk

=
N∑

j ,k=1

xj Pjkxk

�=
∑

j

xj xj = x · x (F.14)

unless one has∑
i

(M T )jiMik = Pjk = δj ,k or MT ·M = P = 1 (F.15)

Matrices satisfying Eqn. (F.15) are said to be orthogonal.
Finally, the determinant of a matrix is a number formed from the elements of

the matrix via

det(M) =
N∑

i1,i2,...,iN=1

ε(i1,i2,...,iN )M1,i1M2,i2 · · ·MN ,iN (F.16)
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The totally antisymmetric symbol,É ε(i1,i2,...,in), is defined via

ε(i1,i2,...,iN ) =




+1 if (i1, i2, . . . , iN ) is an
even permutation of(1, 2, . . . , N )

−1 if it is an odd permutation
0 otherwise

(F.17)

It vanishes if any two of its indices are the same and is antisymmetric under the
interchange of any pair of indices. Each term in the determinant then consists of
a product of one element from each row, with appropriate signs. For example,

det(A) = det

(
a11 a12

a21 a22

)
= a11a22 − a12a21 (F.18)

and

det(B) = det


b11 b12 b13

b21 b22 b23

b31 b32 b33




= b11b22b33 + b12b23b31 + b13b32b21 − b13b31b22

− b11b23b32 − b12b21b33 (F.19)

One important property of determinants is that the interchange of any two rows
(or columns) gives the same value, but with an additional factor of (−1); this
follows from the definition in Eqn. (F.16) and the antisymmetry of the ε symbol.

Equations of the form

M · vλ = λvλ (F.20)

are called eigenvalue problems and λ is the eigenvalue and vλ the corresponding
eigenvector. We can also write this as

(M− λ1) · v = 0 (F.21)

or in matrix form as


M11 − λ M12 · · · M1N

M21 M22 − λ · · · M2N
...

...
. . .

...
MN 1 MN 2 · · · MNN − λ


 = 0 (F.22)

This is equivalent to a set of N linear equations in N unknowns and the condition
for a solution to exist is that

det(M− λ1) = 0 (F.23)

É It is also called the Levi-Civita symbol.
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and this condition determines the allowed eigenvalues λ. Real matrices for which

MT = M (F.24)

are called symmetric, while complex matrices for which

M† = M (F.25)

are called Hermitian and both have the properties:

• The eigenvalues of M are real.

• The eigenvectors of M corresponding to different eigenvalues are orthogonal.

Example F.1. Eigenvalues and eigenvectors of a simple matrix

The eigenvalues of the matrix

M =
(
23 −36
−36 2

)
(F.26)

are determined by the condition

det
(
23− λ −36
−36 2− λ

)
= λ2 − 25λ− 1250 = 0 (F.27)

which has solutions λ1 = 50 and λ2 = −25. The eigenvector corresponding to λ1 can be
found by insisting that (

23− 50 −36
−36 2− 50

) (
a
b

)
= 0 (F.28)

or

v1 =
(
4/5
−3/5

)
(F.29)

when normalized so that v1·v1 = 1. One similarly finds that

v2 =
(
3/5
4/5

)
(F.30)

(with v2·v2 = 1 by construction) and we confirm that v1·v2 = 0.

Finally, some useful identities involving the scalar and cross-products of
vectors are

A × (B × C) = B(C · A)− C(A · B) (F.31)

A · (B × C) = B · (C × A) = C · (A × B) (F.32)

(A × B) · (C × D) = (A · C)(B · D)− (A · D)(B · C) (F.33)
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F.2 Group Theory

We conclude with a brief definition of a mathematical group. A set of ele-
ments G = {g1, g2, . . .} along with a binary operation (often called “group
multiplication”) denoted by g1 · g2 constitutes a group if it satisfies four
conditions:

1. The product of any two group elements is also a group element, that is,
g3 = g1 ·g2 is from G if g1, g2 are also; the group is closed under multiplication.

2. The group multiplication is associative, namely

(g1 · g2) · g3 = g1 · (g2 · g3) (F.34)

3. There is a unique group element, labeled I or the identity element, which
satisfies

I · gi = gi · I = gi (F.35)

for all gi ∈ G.

4. Every group element, gi , has a unique inverse element, labeled g−1
i which

satisfies

gi · g−1
i = g−1

i · gi = I (F.36)

The set of group elements can be finite or infinite. Groups for which the multi-
plication gives the same answer in either order, that is, for which gi · gj = gj · gi

for every pair of group elements is called a commutative or Abelian group.

F.3 Problems

PF.1. Show that (A · B · · ·Y · Z)T = ZT · YT · · ·BT · AT.

PF.2. Show that the cross-product of two vectors can be written in the form

A × B = det


 î ĵ k̂

Ax Ay Az

Bx By Bz


 (F.37)

PF.3. Find the eigenvalues and eigenvectors of the Hermitian matrix

M =
(

4 3 + 2i
3 − 2i −5

)
(F.38)

and show explicitly that the two eigenvectors are orthogonal. Note that the dot-
product of two complex vectors is defined via v∗1 · v2.




